Learning Manipulation by Sequencing Motor Primitives with a Two-Armed Robot

نویسندگان

  • Rudolf Lioutikov
  • Oliver Kroemer
  • Guilherme Maeda
  • Jan Peters
چکیده

Learning to perform complex tasks out of a sequence of simple small demonstrations is a key ability for more flexible robots. In this paper, we present a system that allows for the acquisition of such task executions based on dynamical movement primitives (DMPs). DMPs are a successful approach to encode and generalize robot movements. However, current applications involving DMPs mainly explore movements that, although challenging in terms of dexterity and dimensionality, usually comprise a single continuous movement. This article describes the implementation of a novel system that allows sequencing of simple demonstrations, each one encoded by its own DMP, to achieve a bimanual manipulation task that is too complex to be demonstrated with a single teaching action. As the experimental results show, the resulting system can successfully accomplish a sequenced task of grasping, placing and cutting a vegetable using a setup of a bimanual robot.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Grounded Relational Symbols from Continuous Data for Abstract Reasoning

Learning from experience how to manipulate an environment in a goal-directed manner is one of the central challenges in research on autonomous robots. In the case of object manipulation, efficient learning and planning should exploit the underlying relational structure of manipulation problems and combine geometric state descriptions with abstract symbolic representations. When appropriate symb...

متن کامل

Reinforcement learning of motor skills with policy gradients

Autonomous learning is one of the hallmarks of human and animal behavior, and understanding the principles of learning will be crucial in order to achieve true autonomy in advanced machines like humanoid robots. In this paper, we examine learning of complex motor skills with human-like limbs. While supervised learning can offer useful tools for bootstrapping behavior, e.g., by learning from dem...

متن کامل

Motor Schemas in Robot Learning

Motor schemas used for robot learning are sequences of action that accomplish a goal-directed behavior, or a task. Motor schemas in robot learning are also known as movement primitives, basis behaviors, units of action, and macro actions. Rather than representing the simplest elementary actions available to the robot, such as a simple command to a robot actuator, schemas and motion primitives r...

متن کامل

Active Affordance Learning in Continuous State and Action Spaces

Learning object affordances and manipulation skills is essential for developing cognitive service robots. We propose an active affordance learning approach in continuous state and action spaces without manual discretization of states or exploratory motor primitives. During exploration in the action space, the robot learns a forward model to predict action effects. It simultaneously updates the ...

متن کامل

Learning Robot Tactile Sensing for Object Manipulation Lernen taktiler Robotersensorik für Objektmanipulation

Tactile sensing is a fundamental component of object manipulation and tool handling skills. With robots entering unstructured environments, tactile feedback also becomes an important ability for robot manipulation and use of tools. In this work, we explore how a robot can learn to use tactile sensing in object manipulation tasks. We first address the problem of in-hand object localization and a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014